ACML 2020 🇹🇭
  • News
  • Program

Machine Learning methods for time series forecasting

By Christoph Bergmeir


Though machine learners claim for potentially decades that their methods yield great performance for time series forecasting, until recently machine learning methods were not able to outperform even simple benchmarks in forecasting competitions, and did not play a role in practical applications. This has changed in the last 3-4 years, with methods being able to win several prestigious competitions. The models are now competitive as more series, and longer series due to higher sampling rates, are typically available. In this tutorial, we will briefly recap the history of the field of forecasting and its developments parallel to machine learning, and then discuss recent developments in the field, around learning across series, multivariate forecasting, recurrent neural networks, CNNs, and other models, and how they are now able to outperform traditional methods.